

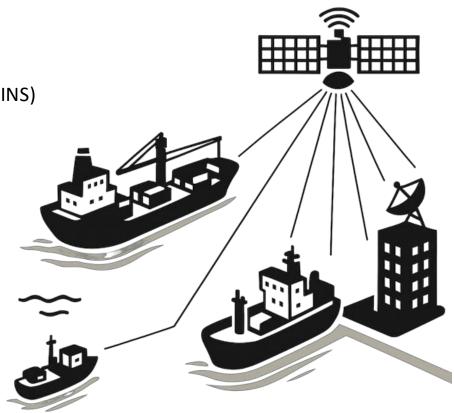
Frederik Basels, Philipp Sedlmeier, Elmar Padilla, Jan Bauer

Seeing is Believing

- A Practical Study of Cyber Attacks on a Ship Navigation Bridge

A Known Threat to Unprepared Seafarers

Digitalization enables cyber attacks on modern vessels


- Ships are no longer air-gapped systems
- Sensors and terminals all interconnected on Integrated Navigation Systems (INS)

Known threat for all kind of maritime personnel

- Cyber security now included in regulations and standards
- Shipyards and owners claim to be aware of the importance
- However:
 - Lack of secure-by-design products
 - 93% of crewmember feel unprepared to handle cyber incidents^[1]

Practical demonstrations on real-world environments necessary

- Improve training of maritime personnel
- Motivate development of cyber secure products

Demonstrated Attacks

Exploitation-/Malware-based Attacks

e.g.,

- Manipulation of received data by malware^[2,3]
- Reconfiguration via vulnerable interfaces^[4]

→ Manipulation of single device

Network-based Attacks

e.g.,

- Injection of network packets as MotS^[5,6]
- Manipulation of intercepted packets as MitM^[7]
 - → Manipulation of all systems on network

Our Goal:

- . Study feasibility of network-based attacks
- 2. Report our lessons learned

Simulative Environments

Our Real-World Bridge

Stationary INS with real marine equipment

- Resembles bridge of actual container ship
- Antenna platform on the roof provides realistic sensor data

Installed and configured according to regulations

- Installed systems, among others:
 ECDIS, Chart RADAR, GNSS, satellite compass, AIS transponder
- Interconnected via NMEA 0183 and IEC 61162-450 networks
- Missing:
 - Information on depth, rudder and propulsion
 - Redundancies in sensors

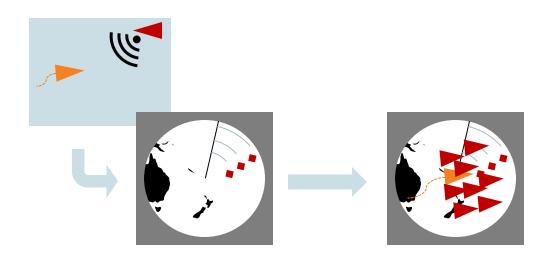
From Simulator to Bridge

Performed Attacks

Scenario:

Attacker infected one device on an arbitrary INS

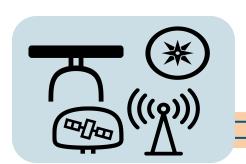
- Laptop connected to network switch
- Little knowledge about the bridge and its configuration
- No change of configuration

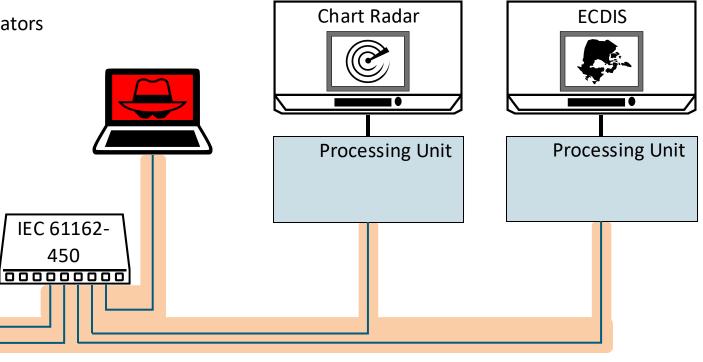

Network-based attacks

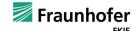
- Bridge Attack Tool (BRAT) to manipulate displayed sensor data
- Radar Attack Tool (RAT) to manipulate displayed RADAR image

Triggering via Covert Channel

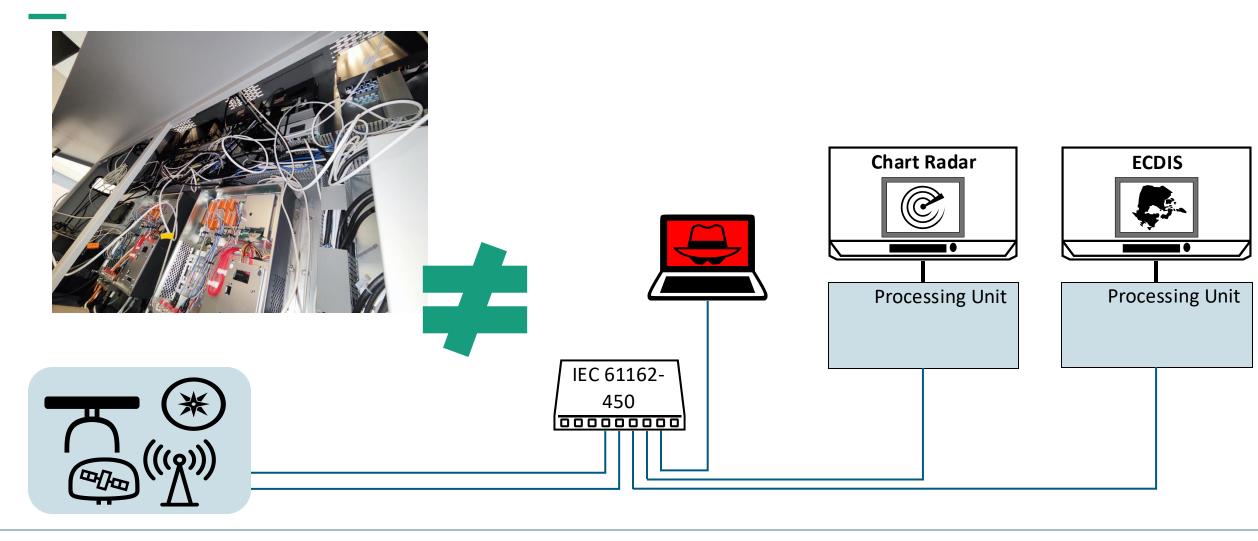
- Reimplemented approaches from literature
 - E.g. RADAR based attack triggering


Expectations

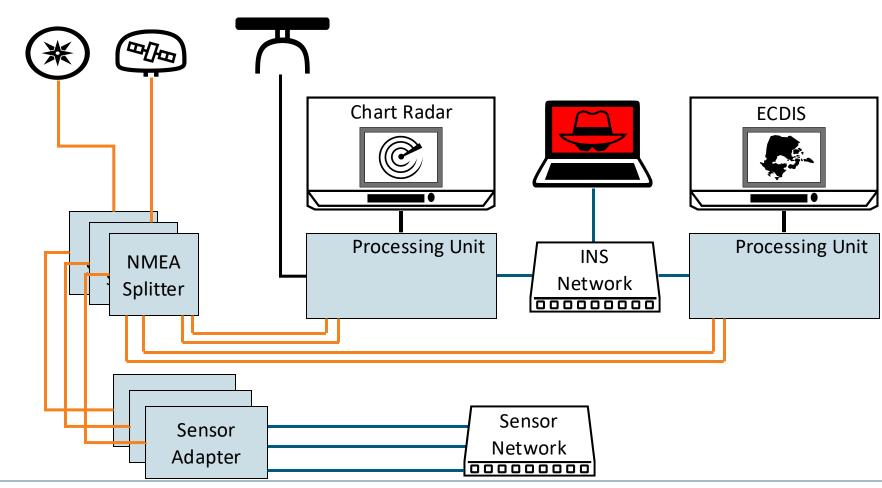

1. BRAT out of the box: not working


- NMEA data only shared in IP-multicast groups managed via IGMP
- IGMP snooping prevented reception of data by BRAT
 - → Part of IEC 61162-450 but not implemented in simulators

2. IGMP capable BRAT: not (fully) working


- NMEA data received and injected by BRAT
- Injected network data ignored by both terminals

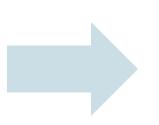
Reality



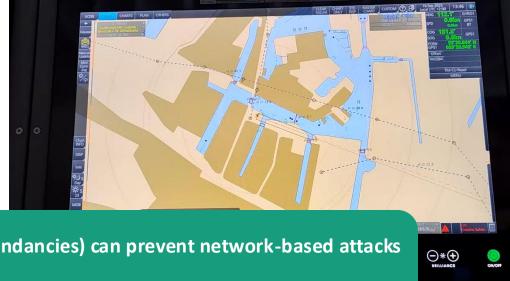
Reality

Existing INS networks:

- Serial network
 - **NMEA 0185**
 - → Main and prioritized data source
- Sensor network
 - Mainly IEC 61162-450
 - Terminals not participants
 - → Actual purpose unknown
- **INS** network
 - IEC 61162-450 and others
 - Sensors not participants
 - → Share terminal settings,
 - → Backup for sensor data


Results

BRAT with IGMP and interrupted serial connections:


- Arbitrary manipulations possible on:
 - **Position**
 - Heading
 - Speed
 - AIS signals
- Sudden or continuous (stealthy)
- Triggering of alerts possible

Limitation:

Manipulations only possible on when serial connection interrupted

Safety measurements (i.e., redundancies) can prevent network-based attacks

→ Reconnaissance and reconfiguration of each terminal might be necessary

RADAR Overlay Manipulation

Results

Prior work necessary:

Understand and implement proprietary network protocol

1. RAT out of the box: successful on ECDIS

- Arbitrary manipulations possible:
 - Changing azimuth field to rotate image
 - Add echoes
 - Remove echoes

Limitations

- Fragments of image visible due to Man-on-the-Side attack
- Fields in network protocol not changeable
 e.g., constant redrawing when changing range field

Chart RADAR Manipulation

Expectation vs. Reality

Expectation:

No manipulation possible

- Direct connection via (apparently) LAN cable from RADAR antenna to processing unit
- However, second spoke visible while replay of network data

Reality:

Image data enters network before being processed

- Sub-module forwards data to processing unit
- Speculations:
 - Sub-module encodes raw video data from RADAR antenna.
 - Routing through network simplified implementation

Chart RADAR Manipulation

Results

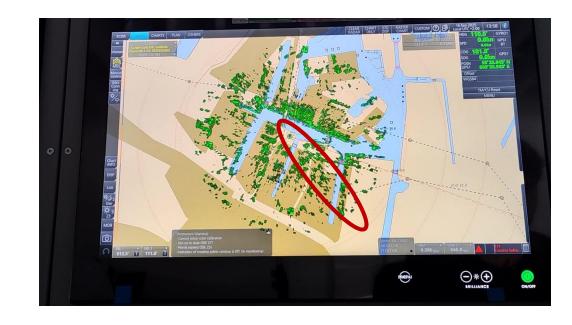
Arbitrary manipulations of Chart RADAR image possible:

- Possible manipulations:
- Change position of echoes
- Add echoes
- Remove echoes
- Change Echo color
 - → blue echoes indicate past echoes of a moving target
- Manipulations without fragments

Limitations:

Fields in network protocol not changeable
 e.g., constant redrawing when changing range field

Remote Triggering


Results

Limitations in tests:

- Proximity of local harbor prevented transmission of fake signals
 - → RADAR trigger tested by message injection
 - Encoded triggering RADAR echoes according protocol

Network traffic has no effect on trigger functionality, but

- RADAR tuning can influence trigger behavior
 - Noisy near harbor or land
 - Noise level dependent on tuning e.g., gain, rain-, sea suppression

RADAR tuning and environment can lead to false triggering

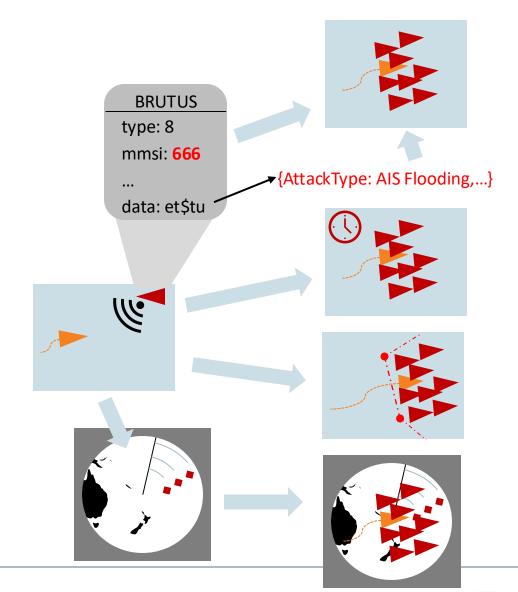
More complex trigger patterns or pattern detection necessary

From Simulator to Bridge

Performed Attacks

Attack Type 2:

Covert control channel to trigger attacks


Reimplemented approaches from literature

Environmental information

- GNSS based trigger agent reacting to
 - Time
 - Location (= Geofencing)

One-directional communication via RF signals

- AIS based trigger agent reacting to
 - Received MMSI
 - Payload in AIS message^[8]
- RADAR based trigger agent reacting to echo patterns^[9]

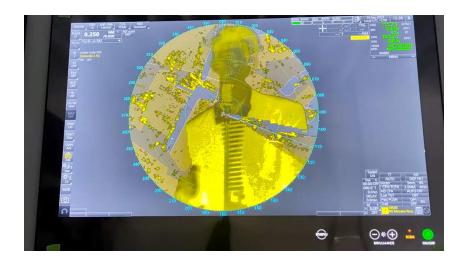
Takeaways & Conclusion

Studied cyber attacks on stationary real-world INS

- Attacks in maritime environment needed for training and awareness
- Focus on network-based cyber attacks
 - → Demonstrated some limitations of proposed cyber threats

Sensor manipulations not trivial

- Redundant and prioritized networks
 - → Access to network does not grand full control
- Reconfiguration might ne necessary
 - Unnoticed physical access unlikely, as casings are hard to access and sealed


INS-wide RADAR manipulation possible

Only protected by nondisclosure of proprietary network protocols

Reception via covert-channels possible, but

- Detection of pattern in RADAR image not trivial
- Depends on environment and tuning of RADAR

Target	Position	AIS	Heading	SOG	RADAR
ECDIS	1	1		1	•
Chart RADAR			•		
Attack Trigger	•		_	_	L

References

- [1] F. Macdonald, "The Lifecycle Dilemma: Navigating cybersecurity risks across designing, constructing and operating a vessel." [Online].
- [2] M. S. Lund, O. S. Hareide, and Ø. Jøsok, "An Attack on an Integrated Navigation System," Necesse, vol. 3, no. 2, 2018.
- [3] V. Wee, "Naval dome exposes vessel vulnerabilities to cyber attack," Seatrade Maritime News, 2017. [Online].
- [4] K. Munro, "Hacking, tracking, stealing and sinking ships," PenTestPartners, 2018. [Online].
- [5] C. Hemminghaus, J. Bauer, and E. Padilla, "BRAT: a Bridge Attack Tool for Cyber Security Assessments of Maritime Systems," TransNav, vol. 15, no. 1, 2021.
- [6] G. Longo, E. Russo, A. Armando, and A. Merlo, "Attacking (and Defending) the Maritime Radar System," IEEE Transactions on Information Forensics and Security, vol. 18, 2023.
- [7] K. Wolsing, A. Saillard, J. Bauer, E. Wagner, C. van Sloun, I. B. Fink, M. Schmidt, K. Wehrle, and M. Henze, "Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset," in Proc. of the 47th IEEE Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, 2022.
- [8] A. Amro and V. Gkioulos, "From Click to Sink: Utilizing AIS for Command and Control in Maritime Cyber Attacks," in Proc. of the 27th European Symposium on Research in Computer Security (ESORICS), Copenhagen, Denmark, 2022.
- [9] W. C. Leite Junior, C. C. de Moraes, C. E. de Albuquerque, R. C. S. Machado, and A. O. de Sá, "A Triggering Mechanism for Cyber-Attacks in Naval Sensors and Systems," Sensors, vol. 21, no. 9, p. 3195, 2021.

