The KuazAap Legacy-Level Block Cipher

Paulo S.L.M. Barreto'* and Vincent Rijmen2**

! Scopus Tecnologia S. A.

A. Mutinga, 4105 - Pirituba
BR-05110-000 Sao Paulo (SP), Brazil
pbarreto@scopus.com.br
2 Katholieke Universiteit Leuven, Dept. ESAT,
Kard. Mercierlaan 94,

B-3001 Heverlee, Belgium
vincent.rijmen@esat.kuleuven.ac.be

Abstract. KHAZAD is a 64-bit (legacy-level) block cipher that accepts
a 128-bit key. The cipher is a uniform substitution-permutation network
whose inverse only differs from the forward operation in the key schedule.
The overall cipher design follows the Wide Trail strategy, favours com-
ponent reuse, and permits a wide variety of implementation tradeoffs.

1 Introduction

In this document we describe KHAZAD, a 64-bit (legacy-level) block cipher that
accepts a 128-bit key.

Although KHAZAD is not a Feistel cipher, its structure is designed so that
by choosing all round transformation components to be involutions, the inverse
operation of the cipher differs from the forward operation in the key scheduling
only. This property will allow reducing the required chip area in a hardware
implementation, as well as the code and table size, which can be important
when KHAZAD is used e.g. in a Java applet.

KHAZAD was designed according to the Wide Trail strategy [5]. In the Wide
Trail strategy, the round transformation of a block cipher is composed of different
invertible transformations, each with its own functionality and requirements.
The linear diffusion layer ensures that after a few rounds all the output bits
depend on all the input bits. The nonlinear layer ensures that this dependency
is of a complex and nonlinear nature. The round key addition introduces the key
material. One of the advantages of the Wide Trail strategy is that the different
components can be specified quite independently from one another. We largely
follow the Wide Trail strategy in the design of the key scheduling algorithm as
well.

* Co-sponsored by the Laboratdrio de Arquitetura e Redes de Computadores (LARC)
do Departamento de Engenharia de Computacdo e Sistemas Digitais da Escola
Politécnica da Universidade de Sdo Paulo (Brazil)

** F.W.O. Postdoctoral Researcher, sponsored by the Fund for Scientific Research —
Flanders (Belgium)

This document is organised as follows. The mathematical preliminaries and
notation employed are described in section 2. A mathematical description of the
KHAZAD primitive is given in section 3. A statement of the claimed security
properties and expected security level is made in section 4. An analysis of the
primitive with respect to standard cryptanalytic attacks is provided in section 5
(a statement that there are no hidden weaknesses inserted by the designers is
explicitly made in section 5.9). Section 6 contains the design rationale explaining
design choices. Implementation guidelines to avoid implementation weaknesses
are given in section 7. Estimates of the computational efficiency in software are
provided in section 8. The overall strengths and advantages of the primitive are
listed in section 9.

2 Mathematical preliminaries and notation

We now summarise the mathematical background and notation that will be used
throughout this paper.

2.1 Finite fields

The finite field GF(28) will be represented as GF(2)[z]/p(z), where p(z) = 28 +
z* + 23 + 2% + 1 is the first primitive polynomial of degree 8 listed in [20]. The
polynomial p(z) was chosen so that g(z) = z is a generator of GF(2%) \ {0}.

An element v = urz” + ugz® + usz® + uazr* + usz® + usx® + Uiz + ug of
GF(28) where u; € GF(2) for all 4 = 0,...,7 will be denoted by the numerical
value uz - 27 + ug - 26 + ug - 2% + ug - 2% + uz - 23 +us - 22 + Uy - 2+ ug, written in
hexadecimal notation (hexadecimal digits enclosed in quotes). For instance, the
polynomial u = z* 4+ = + 1 will be represented by the hexadecimal byte value
‘13'. By extension, the reduction polynomial p(z) may be written ‘11d’.

2.2 Matrix classes

If m is a power of 2, had(ao, . ..,am—1) denotes the m x m Hadamard matrix [2]
with elements h;; = aq);.

2.3 MDS codes

We provide a few relevant definitions regarding the theory of linear codes. For a
more extensive exposition on the subject we refer to [22].

The Hamming distance between two vectors u and v from the n-dimensional
vector space GF(2P)™ is the number of coordinates where 4 and v differ.

The Hamming weight wy(a) of an element ¢ € GF(2P)" is the Hamming
distance between a and the null vector of GF(2P)", i.e. the number of nonzero
components of a.

A linear [n,k,d] code over GF(2P) is a k-dimensional subspace of the vec-
tor space (GF(2?))", where the Hamming distance between any two distinct
subspace vectors is at least d (and d is the largest number with this property).

A generator matriz G for a linear [n,k,d] code C is a k x n matrix whose
rows form a basis for C. A generator matrix is in echelon or standard form if it
has the form G = [T« Akx(n_k)], where I« is the identity matrix of order k.
We write simply G = [I A] omitting the indices wherever the matrix dimensions
are irrelevant for the discussion, or clear from the context.

Linear [n, k, d] codes obey the Singleton bound:

d<n—-k+1.

A code that meets the bound, i.e. d = n—k + 1, is called a mazimal distance
separable (MDS) code.

A linear [n, k,d] code C with generator matrix G = [Irxx Agx(n—r)] is MDS
if, and only if, every square submatrix formed from rows and columns of A is
nonsingular (cf. [22], chapter 11, §4, theorem 8).

2.4 Cryptographic properties

A product of m distinct Boolean variables is called an m-th order product of the
variables. Every Boolean function f : GF(2)" — GF(2) can be written as a sum
over GF(2) of distinct m-order products of its arguments, 0 < m < n; this is
called the algebraic normal form of f. The nonlinear order of f, denoted v(f),
is the maximum order of the terms appearing in its algebraic normal form.

A linear Boolean function is a Boolean function of nonlinear order 1, i.e. its
algebraic normal form only involves isolated arguments. Given a € GF(2)", we
denote by I, : GF(2)™ — GF(2) the linear Boolean function consisting of the
sum of the argument bits selected by the bits of a:

n—1
lo(z) = EBQ,- T
=0

A mapping S : GF(2") —» GF(2"),z — S[z], is called a substitution boz,
or S-box for short. An S-box can also be viewed as a mapping S : GF(2)" —
GF(2)" and therefore described in terms of its component Boolean functions
s; : GF(2)" - GF(2),0<i<n—1,ie. S[z] = (so(z),...,5n-1(x)).

The nonlinear order of an S-box S, denoted vg, is the minimum nonlinear
order over all linear combinations of the components of S:

vg = aeglFl‘I(l2)"{V(la 0 9)}.

The difference table of an S-box S is defined as
es(a,b) = #{c € GF(2")|S[c @ a] ® S[c] = b}.

The d-parameter of an S-box S is defined as

1
- max eg(a, b).

do =
o es(0,0) a#0,b

The product § - es(0,0) is called the differential uniformity of S.

The correlation c(f,g) between two Boolean functions f and g can be calcu-
lated as follows:

c(f,9) = 27" #{z|f(z) = f(9)} - 1.

The A-parameter of an S-box S is defined as the maximal value for the
correlation between linear functions of input bits and linear functions of output
bits of S:

As = max c(l;,l;085).
s (i,j)#()é,o)(i)

The branch number B of a linear mapping 0 : GF(2P)* — GF(2P)™ is defined
as

B(9) = min{wn(a) + wn(6(a))}

Given an [k + m,k,d] linear code over GF(2P) with generator matrix G =
[Tkxk Mixm], the linear mapping 6 : GF(2P)F — GF(2P)™ defined by

f(a)=a-M

has branch number B(#) = d; if the code is MDS, such a mapping is called an
optimal diffusion mapping [25].

2.5 Miscellaneous notation

Given a sequence of functions fm,, fm+1,-- -5 fa—1, fn, m < n, we use the notation

O::m f'r = fmofm—i-lo"'ofn—lofn: and O:n:n fr = fnofn—lo"'ofm-i—lofm;

if m > n, both expressions stand for the identity mapping.

3 Description of the KHAZAD primitive

The KHAZAD cipher is an iterated ‘involutional’® block cipher that operates on
a 64-bit cipher state represented as a vector in GF(2%)8. It uses a 128-bit cipher
key K represented as a vector in GF(28)16, and consists of a series of applications
of a key-dependent round transformation to the cipher state.

In the following we will individually define the component mappings and
constants that build up KHAZAD, then specify the complete cipher in terms of
these components.

! We explain in section 3.8 what we mean by an ‘involutional’ block cipher.

3.1 The nonlinear layer ~

Function v : GF(28)® — GF(2%)® consists of the parallel application of a nonlin-
ear substitution box S : GF(28) — GF(28),z — S[z] to all bytes of the argument
individually:

Y(@)=b & b;=S[ai], 0<i 7.

The substitution box was pseudo-randomly chosen and is listed in appendix A.
The search criteria are described in section 6.2; one of them imposes that S
be an involution, i.e. S[S[z]] = = for all z € GF(2%). Therefore, v itself is an
involution.

3.2 The linear diffusion layer 6

The diffusion layer # : GF(2%)® — GF(2%)® is a linear mapping based on
the [16,8,9] MDS code with generator matrix Gg = [I H] where H =
had(‘01',°03', 04", ‘05", ‘06’, ‘08", ‘0b’, ‘07), i.e.

[‘01" ‘03’ ‘04’ ‘05’ ‘06" ‘08’ ‘Ob’ ‘07"]
‘03’ ‘01" ‘05" ‘04" ‘08’ ‘06" ‘07" ‘Ob’
‘04’ '05’ ‘01’ ‘03" ‘Ob’ ‘07’ ‘06’ ‘08’
‘05’ '04’ ‘03’ ‘01" ‘07’ ‘Ob’ ‘08’ ‘06’
‘06’ '08’ ‘Ob’ ‘07" ‘01" ‘03’ ‘04’ '05’ |’
‘08’ '06’ ‘07" ‘Ob’ ‘03" ‘01’ ‘05’ ‘04’
‘Ob’ '07" ‘06" ‘08’ ‘04’ ‘05’ ‘01" ‘03’
‘07’ ‘'Ob’ ‘08" ‘06" ‘05’ ‘04’ ‘03" ‘01" |

so that
f(a) =b & b=a-H.
A simple inspection shows that matrix H is symmetric and unitary. Therefore,

0 is an involution.

3.3 The key addition o[k]

The affine key addition o[k] : GF(28)® — GF(28)® consists of the bitwise addition
(exor) of a key vector k € GF(2%)8:

a[k](a) =beb=0a;dk, 0<i<T.
This mapping is also used to introduce round constants in the key schedule, and

is obviously an involution.

3.4 The round constants ¢”

The round constant for the r-th round is a vector ¢ € GF(28)%, defined as:

¢; = S[8r+i], 0<i < R.

3.5 The round function p[k]

The r-th round function is the composite mapping p[k] : GF(28)® — GF(2%)8,
parameterised by the key vector k € GF(28)® and given by:

plk] = o[k]ofoy.

3.6 The key schedule

The key schedule expands the cipher key K € GF(2%)% into a sequence of round
keys K°,..., K®, plus two initial values, K~2 and K~!), with K" € GF(2%)8.
The initial values K~2 and K~! are taken respectively from bytes 0 through 7
and 8 through 15 of the cipher key K:

K;? =K,

K= Ko, } 0<i<T.

The sequence of round keys are computed by means of a Feistel iteration based
on the round function p and the round constants ¢":

K =p[c|(K"™)@ K2 0<r<R

3.7 The complete cipher
KHAZAD is defined for the cipher key K as the transformation KHAZAD[K] =
ar[K?, ..., KE] applied to the plaintext, where
r=R—1
ar[K®...,K¥ = o[KR]oyo (O p[KT]> oa[K".
1

The standard number of rounds is R = 8.

3.8 The inverse cipher

We now show that KHAZAD is an involutional cipher, in the sense that the only
difference between the cipher and its inverse is in the key schedule. We will need
the following lemma:

Lemma 1. foo[K"] = o[6(K")] 0 6.

Proof. Tt suffices to notice that (# o [K"])(a) = (K" @ a) = 6(K") ® 6(a) =
(o[0(KT)] 0 6)(a), for any a € GF(2%)8. m|

Let KO = KB, KR = K° and K" = §(K®"), 0 < r < R. We are now ready
to state the main property of the inverse KHAZAD cipher agl[K 0 ..., KE]:

Theorem 1. ap'[K?,..., KE] = ag[K°,...,K".

Proof. We start from the definition of R-round KHAZAD:
=R-1

ar[K® ..., K®] = o[K®|oyo (T (1) oK™ o@oy) o g[K"].

Since the component functions are involutions, the inverse cipher is obtained by
applying them in reverse order:

aEl[KO,...,KR] =og[K% o (6170000[KT]) oyoo[KE.

r=1

The above lemma, leads to:
R-1
ORI, K] = oK o (G 70 (K" 00) oy 0 K"
r=1

The associativity of function composition allows slightly changing the grouping
of operations:

ag'[K°,...,K®] = o[K% oyo (TQJU[Q(KT)] 0007> oo[KR.

Finally, by substituting K" in the above equation, we arrive at:

r=R—1

ar[K® ..., KR =o[K®]oyo (Q o[K"] o€o7> oo[KY).

That is, ag'[K°,..., K] = ag[K°,...,K¥], where K* = K®, K® = K°, and
Kr=6(KE"),0<r <R. O

Corollary 1. The KHAZAD cipher has involutional structure, in the sense that
the only difference between the cipher and its inverse is in the key schedule.

4 Security goals

In this section, we present the goals we have set for the security of KHAZAD. A
cryptanalytic attack will be considered successful by the designers if it demon-
strates that a security goal described herein does not hold.

In order to formulate our goals, some security-related concepts need to be
defined.

4.1 The set of ciphers for given block length and key length

A block cipher of block length v has V' = 2" possible inputs. If the key length is
u it defines a set of U = 2* permutations over {0,1}". The number of possible
permutations over {0,1}” is V!. Hence the number of all possible block ciphers
of dimensions u and v is

(@2)HE) = (v

For practical values of the dimensions (e.g. v and u above 40), the subset of
block ciphers with exploitable weaknesses form a negligible minority in this set.

4.2 K-Security

Definition 1 ([5]). A block cipher is K-secure if all possible attack strategies
for it have the same expected work factor and storage requirements as for the
magority of possible block ciphers with the same dimensions. This must be the
case for all possible modes of access for the adversary (known/chosen/adaptively
chosen plaintext/ciphertext, known/chosen/adaptively chosen key relations ...)
and for any a priori key distribution.

K-security is a very strong notion of security. It can easily be seen that if one of
the following weaknesses apply to a cipher, it cannot be called K-secure:

— Existence of key-recovering attacks faster than exhaustive search;

— Certain symmetry properties in the mapping (e.g. any complementation
property);

Occurrence of non-negligible classes of weak keys;

— Related-key attacks.

K-security is essentially a relative measure. It is quite possible to build a K-secure
block cipher with a 5-bit block and key length. The lack of security offered by
such a scheme is due to its small dimensions, not to the fact that the scheme
fails to meet the requirements imposed by these dimensions. Clearly, the longer
the key, the higher the security requirements.

4.3 Hermetic block ciphers

It is possible to imagine ciphers that have certain weaknesses and still are K-
secure. An example of such a weakness would be a block cipher with a block
length larger than the key length and a single weak key, for which the cipher
mapping is linear. The detection of the usage of the key would take at least a
few encryptions, while checking whether the key is used would only take a single
encryption.

If this cipher would be used for encipherment, this single weak key would
pose no problem. However, used as a component in a larger scheme, for instance
as the compression function of a hash function, this property could introduce a
way to efficiently generate collisions.

For these reasons we introduce yet another security concept, denoted by the
term hermetic.

Definition 2 ([5]). A block cipher is hermetic if it does not have weaknesses
that are not present for the majority of block ciphers with the same block and
key length.

Informally, a block cipher is hermetic if its internal structure cannot be exploited
in any attack.

4.4 Goal
For all allowed key lengths, the security goals are that the KHAZAD cipher is:

— K-secure;
— Hermetic.

If KHAZAD lives up to its goals, the strength against any known or unknown
attacks is as good as can be expected from a block cipher with the given dimen-
sions.

4.5 Expected strength

KHAZAD is expected to behave as good as can be expected from a block ci-
pher with the given block and key lengths (in the sense of being K-secure and
hermetic).

This implies among other things, the following. The most efficient key-
recovery attack for KHAZAD is exhaustive key search. Obtaining information
from given plaintext-ciphertext pairs about other plaintext-ciphertext pairs can-
not be done more efficiently than by determining the key by exhaustive key
search. Since the cipher uses 128-bit keys, the expected effort of exhaustive key
search is 2127 applications of KHAZAD.

The rationale for this is that a considerable safety margin is taken with
respect to all known attacks. We do however realise that it is impossible to make
non-speculative statements on things unknown.

5 Analysis

5.1 Differential and linear cryptanalysis

Because the branch number of 6 is B = 9 (cf. [26], proposition 1), no differential
characteristic over two rounds has probability larger than §% = (275)% = 2745,
and no linear approximation over two rounds has input-output correlation larger
than A® = (13x276)? ~ 2720-7. This makes classical differential or linear attacks,
as well as some advanced variants like differential-linear attacks, very unlikely
to succeed for the full cipher.

5.2 Truncated differentials

The concept of truncated differentials was introduced in [17], and typically ap-
plies to ciphers in which all transformations operate on well aligned data blocks.
Since in KHAZAD all transformations operate on bytes rather than individual
bits, we investigated its resistance against truncated differentials. The fact that
all submatrices of H are nonsingular, makes a truncated differential attack
against more than a few rounds of KHAZAD impossible, because the S/N ra-
tio of an attack becomes too low. For 4 rounds or more, no truncated differential
attacks can be mounted.

5.3 Interpolation attacks

Interpolation attacks [13] generally depend on the cipher components (particu-
larly the S-box) having simple algebraic structures that can be combined to give
expressions with manageable complexity. In such attacks, the attacker constructs
polynomials (or rational expressions) using cipher input/output pairs; if these
polynomials have small degree, only few cipher input/output pairs are necessary
to solve for their (key-dependent) coefficients. The complicated expression of the
pseudo-randomly generated S-box in GF(28), in combination with the effect of
the diffusion layer, makes these types of attack infeasible for more than a few
rounds.

5.4 Weak keys

The weak keys discussed in this subsection are keys that result in a block cipher
mapping with detectable weaknesses. The best known case of such weak keys
are those of IDEA [5]. Typically, this weakness occurs for ciphers in which the
nonlinear operations depend on the actual key value. This is not the case for
KHAZAD, where keys are applied using exor and all nonlinearity is in the fixed
S-box. In KHAZAD, there is no restriction on key selection.

5.5 Related-key cryptanalysis

Related-key attacks generally rely upon slow diffusion and/or symmetry in the
key schedule. The KHAZAD key schedule inherits many properties from the round
structure itself, and was designed to cause fast, nonlinear diffusion of cipher key
differences to the round keys.

5.6 The Shark attack and its variants

In this section we present an attack first described in [25]. This attack works
against KHAZAD reduced to 3 rounds. We will denote by a” the cipher state
at the beginning of the r-round (input to 7), and by b" the cipher state at the
output of the o key addition in the r-round; these quantities may be indexed to
select a particular byte. For instance, b} is the byte at position i of the cipher
state at the output of round 1.

Take a set of 256 plaintexts different from each other in a single byte (which
assumes all possible values), the remaining 7 bytes being constant. After one
round all 8 bytes of each cipher state a? in the set will take every value exactly
once. After two rounds, the exor of all 256 cipher states a® at every byte position
will be zero.

Consider a ciphertext b®> = v(a®) ® K3; clearly a® = v(b® @ K*). Now take
a byte from b2, guess the matching byte from K3 and apply 7 to the exor of
these quantities. Do this for all 256 ciphertexts in the set and check whether the
exor of the 256 results indeed equals zero. If it doesn’t, the guessed key byte is
certainly wrong. A few wrong keys (a fraction about 1/256 of all keys) may pass

10

this test; repeating it for a second set of plaintexts leaves only the correct K°
value with overwhelming probability.

This attack recovers one byte of the last round key. The remaining bytes can
be obtained by repeating the attack eight times. Overall, this attack requires 2°
chosen plaintexts. However, almost all wrong key values can be eliminated after
processing a single set of 28 plaintexts. The workload to recover one key byte is
thus 28 key guesses x2% chosen plaintexts = 216 S-box lookups.

5.7 A general extension attack

Stefan Lucks [21] presents a general extension of any n-round attack; the result
is an attack against (n + 1) rounds. The idea is simply to guess the whole K™+1
round key and proceed with the n-round attack. This increases the complexity
by a factor 26* S-box lookups.

The best attack known against 3 rounds of KHAZAD has complexity about
S-box lookups, hence the 4-round extension costs 216764 = 280 S_box lookups.

216

5.8 Other attacks

Attacks based on linear cryptanalysis can sometimes be improved by using non-
linear approximations [18]. However, with the current state of the art the ap-
plication of nonlinear approximations seems limited to the first and/or the last
round of a linear approximation. This seems to be even more so for ciphers using
strongly nonlinear S-boxes, like KHAZAD.

The boomerang attack [27] benefits from ciphers whose encryption and de-
cryption strengths are different; this is hardly the case for KHAZAD, due to its
involutional structure.

We see no obvious way to extend the Gilbert-Minier attack [10] against
RIJNDAEL and other ciphers of the Square family, since the attack makes di-
rect use of the two-level diffusion structure of those ciphers.

An extension of the Biham-Keller impossible differential attack on RIJNDAEL
reduced to 5 rounds [4] can be applied to KHAZAD, reduced to 3 rounds. The
attack requires 2! chosen plaintexts and an effort of 264 encryptions.

We were not able to find any other method to attack the cipher faster than
exhaustive key search.

5.9 Designers’ statement on the absence of hidden weaknesses

In spite of any analysis, doubts might remain regarding the presence of trapdoors
deliberately introduced in the algorithm. That is why the NESSIE effort asks
for the designers’ declaration on the contrary.

Therefore we, the designers of KHAZAD, do hereby declare that there are no
hidden weaknesses inserted by us in the KHAZAD primitive.

11

6 Design rationale

6.1 Self-inverse structure

Involutional structure is found as part of many cipher designs. All classical Feistel
networks [8] have this property, as do some more general iterated block ciphers
like IDEA [23]. Self-inverse ciphers similar to KHAZAD were described and ana-
lyzed in [29, 30].

The importance of involutional structure resides not only in the advantages
for implementation, but also in the equivalent security of both encryption and
decryption [19].

6.2 Choice of the substitution box
The S-box S was pseudo-randomly chosen to satisfy the following conditions:
— S must be an involution, i.e. S[S[z]] = = for all z € GF(28).

The §-parameter must not exceed 8 x 278,
The A-parameter must not exceed 16 x 276,

The nonlinear order » must be maximum, namely, 7.

The values of § and A are constrained to be no more than twice the minimum
achievable values. The actual KHAZAD S-box has A = 13 x 276, experiences
showed that involutions with § < 8 x 278 and A < 13 x 279 are extremely rare,
as none was found in a set of over 600 million randomly generated S-boxes.

The following auxiliary conditions were also imposed to speed up the S-box
search:

— S must not have any fixed point, i.e. S[z] # z for all z € GF(28).
— The value of any difference z @ S[z] must occur exactly twice (hence the set
of all difference values consists of exactly 128 elements).

The absence of fixed points is inspired by the empirical study reported in sec-
tion 2.3 of [29], where the strong correlation found between the cryptographic
properties and the number of fixed points of a substitution box suggests min-
imising the number of such points. In a more general fashion, we empirically
found that the fraction of random involutions with good values of § and A is
increased not only by avoiding fixed points, but also by minimising the number
of occurrences of any particular difference z @ S[z] (or, equivalently, maximising
the number of such differences).

Finally, the polynomial and rational representations of S over GF(28) were
checked to avoid any obvious algebraic weakness. The random nature of the
search tend to make these representations as involved as possible.

12

6.3 Choice of the diffusion layer

The actual matrix used in the diffusion layer § was selected by exhaustive search.
Although other ciphers of the same family as KHAZAD use circulant matrices for
this purpose (cf. [26]), it is not difficult to prove that no such matrix can be self-
inverse. On the other hand, unitary Hadamard matrices can be easily computed
that satisfy the MDS condition.

The actual choice involves coefficients with the lowest possible Hamming
weight (which is advantageous for hardware implementations) and lowest pos-
sible integer values (which is important for smart card implementations as dis-
cussed in section 7.3).

6.4 Structure of the key schedule

Adopting a Feistel key schedule provides a simple and effective way to expand a
2m-bit cipher key onto m-bit round keys reusing the round function itself. This
keeps the overall cipher structure uniformly m-bit oriented (in the sense that
the natural data units occurring in the cipher are bytes and m-bit blocks).

6.5 Choice of the round constants

Good round constants should not be equal for all bytes in a state, and also
not equal for all bit positions in a byte. They should also be different in each
round. The actual choice meets these constraints while also reusing an available
component (the S-box itself).

7 Implementation

KHAZAD can be implemented very efficiently. On different platforms, different
optimisations and tradeoffs are possible. We make here a few suggestions.

13

7.1 64-bit processors
We suggest a lookup-table approach to implement p:
b=(807)(a)

T
[bo bl bz b3 b4 b5 bﬁ b7] = [S[ao] S[al] S[az] S[a3] S’[a4] 5[0,5] S[U,G] S[Uq]] -H

=

[bo by ba bs by b bg by | = S[ag] -[01' ‘03’ ‘04’ ‘05’ ‘06’ ‘08" ‘Ob’ ‘07"
-['03' ‘01" ‘05" ‘04" ‘08 ‘06" ‘07" ‘0b’]
-['04" ‘05" ‘01’ ‘03’ ‘Ob’ ‘07" ‘06" ‘08']
@ Slas] - ['05' ‘04’ ‘03’ ‘01’ ‘07’ ‘Ob’ ‘08" ‘06']
-['06' ‘08" ‘Ob’ ‘07" ‘01’ ‘03" ‘04’ ‘05']
-['08' ‘06" ‘07" ‘Ob’ ‘03’ ‘01" ‘05" ‘04']
-['0b’ ‘07" ‘06’ ‘08’ ‘04’ ‘05’ ‘01’ ‘03']
-['07' ‘Ob’ ‘08’ ‘06’ ‘05’ ‘04’ ‘03’ ‘01'].

Using the following eight tables:

To[z] = S[z] -['01" '03" ‘04’ ‘05’ ‘06’ ‘08’ ‘Ob’ '07],
Ty[z] = S[z] -['03" '01’ ‘05’ ‘04’ ‘08" ‘06’ ‘07" ‘Ob'],
To[z] = S[z] -['04" '05’ ‘01’ ‘03’ ‘Ob’ ‘07" ‘06’ '08'],

-['06’ '08’ ‘Ob’ '07’ ‘01’ ‘03’ ‘04" '05'],
-['08’ '06’ ‘07" ‘Ob’ ‘03’ ‘01" ‘05" '04'],
-['Ob’' ‘07" ‘06" '08’ ‘04’ ‘05" ‘01" '03'],
-['07’ 'Ob’ ‘08" '06’ ‘05’ ‘04’ ‘03" '01'],

&
B.8.8.8 .8 8.8 .8
I
R e 2 e Pea e Y2
8

8

8

8

]
%
-[05’ ‘04’ ‘03 01’ ‘07’ ‘Ob’ ‘08" '06'],
]
]
]
]

8

a row of b can be calculated with eight table lookups and seven exor operations;
the key addition then completes the evaluation of p. The T-tables require 28 x 8
bytes of storage each. An implementation can use the fact that the corresponding
entries of different T-tables are permutations of one another and save some
memory at the expense of introducing extra permutations at runtime. Usually
this decreases the performance of the implementation.

7.2 32-bit processors
Any Hadamard matrix H (of order m) shows a recursive structure, in the sense
that
uv
#=[vo]

where U and V' are themselves Hadamard matrices (of order m/2). A 32-bit
implementation may take advantage of this structure by representing elements

14

a € GF(28)® as a = [Go a1 |, where ao, a1 € GF(28)%:

with twice the complexity derived for 64-bit processors regarding the number of
table lookups and exors, but using smaller tables (each requiring 28 x 4 bytes of
storage).

7 7]UV
VU

=

i)o =aoU & a1V,
by =@V @ aiU,

7.3 8-bit processors

On an 8-bit processor with a limited amount of RAM, e.g. a typical smart
card processor, the previous approach is not feasible. On these processors the
substitution is performed byte by byte, combined with the o[k] transformation.
For 0, it is necessary to implement the matrix multiplication.

The following piece of pseudo-code calculates b = 6(a), using a table X
that implements multiplication by the polynomial g(z) = z in GF(28) and six

registers ToyT1,72,73,74,75:

To
1
T2
T3
T4

ap ® a1 ® X[X[az & a3]];

as @ az ® X[X[ao ® a1]];

ag © ar;

X[X[as @ ae]];

a4 @ as;

X[X[as @ ar]];

a3 @rogD@r. drs €BX[a1 Dag Dro @7‘3];

a2 @19 D12 D3 EBX[aOGB% D ro @7‘5];
]
]

?

aL®r @7’4@7‘3@)([0,3@0/6@7‘4@7‘5

a®rL ®ra®r; ® X[as D ar Dry drs

a4 ® as ® X[X[as ® a7]];

ag ® a7 & X[X[as ® as]];

a2 © az;

X[X[a1 & ao]];

ag @ ag;

X[X[a(] 69(1,3]];

arDro®@re drs GBX[G,5EB0/0®T2 @7‘3];

ag @19 D12 D3 GBX[a4EBa1 D ro @7‘5];
]
]

?

?

G,5EBT'1GE"I’4€BT3€BX[G7EBG2®T4€B'I‘5
as®ri®radrs ® X[agDas Dra dr3

?

15

|

This implementation requires 76 exors, 24 table lookups and 20 assignments.
Notice that, if an additional table X2 is available, where X2[u] = X[X[u]],
the number of table lookups drops to 16. There may be more efficient ways to
implement 6, however; we did not search thoroughly all possibilities.

7.4 Techniques to avoid software implementation weaknesses

The attacks of Kocher et al. [15,16] have raised the awareness that careless
implementation of cryptographic primitives can be exploited to recover key ma-
terial. In order to counter this type of attacks, attention has to be given to the
implementation of the round transformation as well as the key scheduling of the
primitive.

A first example is the timing attack [15] that can be applicable if the execu-
tion time of the primitive depends on the value of the key and the plaintext. This
is typically caused by the presence of conditional execution paths. For instance,
multiplication by a constant value over a finite field is sometimes implemented as
a multiplication followed by a reduction, the latter being implemented as a con-
ditional exor. This vulnerability is avoided by implementing the multiplication
by a constant by means of table lookups, as proposed in sections 7.2 and 7.3.

A second class of attacks are the attacks based on the careful observation of
the power consumption pattern of an encryption device [16]. Protection against
this type of attack can only be achieved by combined measures at the hardware
and software level. We leave the final word on this issue to the specialists, but we
hope that the simple structure and the limited number of operations in KHAZAD
will make it easier to create an implementation that resists this type of attacks.

7.5 Hardware implementation

We have currently no figures on the attainable performance and required area
or gate count of KHAZAD in ASIC or FPGA, nor do we have a description in
VHDL. However, we expect that the results on RIJNDAEL [12, 28] will carry over
to some extent.

8 Efficiency estimates

8.1 Key setup

Table 1 lists the observed key setup efficiency on a 550 MHz Pentium IIT plat-
form. Since the key schedule is based on the round function itself, no extra storage
is needed besides that already required for implementing encryption/decryption.

The increased cost of the decryption key schedule is due to the application
of 8 to R — 1 round keys. This is done with the same tables used for encryption
and decryption (the implicit y transform in those tables is undone with an extra
T7 lookup and word masking). The setup of decryption keys is therefore 68%
more expensive than the setup of encryption keys.

16

Table 1. Key setup efficiency

cycles (encryption schedule)|cycles (decryption schedule)
717 1206

We point out that the reference implementation used to measure efficiency
is not fully optimised, and that the platform word size in 32 bits rather than
64 bits. By coding the key setup in assembler and running the test on a native
64-bit processor, we expect a reduction of the cycle counts by a factor of at least
2.

8.2 Encryption and decryption

Since KHAZAD has involutional structure, encryption and decryption are equally
efficient (for the same number of rounds). Table 2 summarises the observed ef-
ficiency on a 550 MHz Pentium III platform. We use the eight-table implemen-
tation described in section 7.1.

Table 2. Encryption/decryption efficiency

cycles per byte|cycles per block|Mbit/s
67.0 536 65.7

9 Advantages

By design, KHAZAD is much more scalable than most modern ciphers, in the
sense of being very fast while avoiding excessive storage space (for both code
and tables) and expensive or unusual instructions built in the processor; this
makes it suitable for a wide variety of platforms. The same structure also favours
extensively parallel execution of the component mappings, and its mathematical
simplicity tends to make analysis easier.

9.1 Comparison with SHARK

KHAZAD has many similarities with the block cipher SHARK [26]. In this section,
we list the most important differences.

The involutional structure: The fact that all components of KHAZAD are
involutions should in principle reduce the code size or area in software, re-
spectively hardware applications that implement both encryption and de-
cryption.

17

The different S-box: The S-box of KHAZAD is generated in a pseudo-random

way. The advantage of this lack of structure is that providing a simple math-
ematical description seems more difficult. The polynomial expansion of the
S-box is certainly more involved. The disadvantages are the suboptimal dif-
ferential and linear properties, and the more complex hardware implemen-
tation.

The different key scheduling: The key scheduling of KHAZAD executes

faster than that of SHARK, and still provides adequate security. In particular
for the processing of short messages, the performance of the key scheduling
is important.

References

1.

10.

11.
12.

13.

14.

15.

16.

P.S.L.M. Barreto and V. Rijmen, “The ANUBIS block cipher,” NESSIE submission,
2000.

K.G. Beauchamp, “Walsh functions and their applications,” Academic Press, 1975.
E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials,” Advances in Cryptology, Eurocrypt’99,
LNCS 1592, J. Stern, Ed., Springer-Verlag, 1999, pp. 55-64.

E. Biham and N. Keller, “Cryptanalysis of reduced variants of RIJNDAEL,” sub-
mission to the Third Advanced Encryption Standard Candidate Conference.

J. Daemen, “Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis,” Doctoral Dissertation, March 1995, K.U.Leuven.

J. Daemen, L.R. Knudsen and V. Rijmen, “The block cipher SQUARE,” Fast Soft-
ware Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149-165.
J. Daemen and V. Rijmen, “AES proposal: RIJNDAEL,” AES submission (1998),
http://www.nist.gov/aes.

H. Feistel, “Cryptography and computer privacy,” Scientific American, v. 228, n. 5,
1973, pp. 15-23.

N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting,
“Improved cryptanalysis of RIINDAEL,” to appear in Fast Software Encryption’00,
Springer-Verlag.

H. Gilbert and M. Minier, “A collision attack on 7 rounds of Rijndael,” Third
Advanced Encryption Standard Candidate Conference, NIST, April 2000, pp. 230—
241.

K. Hoffman and R. Kunze, “Linear Algebra (2nd ed.),” Prentice Hall, 1971.

T. Ichikawa, T. Kasuya, M. Matsui, “Hardware evaluation of the AES finalists,”
Third Advanced Encryption Standard Candidate Conference, NIST, April 2000,
pPp. 279-285.

T. Jakobsen and L.R. Knudsen, “The interpolation attack on block ciphers,” Fast
Software Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 28—40.
J. Kelsey, B. Schneier, D. Wagner, C. Hall, “Cryptanalytic attacks on pseudoran-
dom number generators,” Fast Software Encryption, LNCS 1372, S. Vaudenay ,
Ed., Springer-Verlag, 1998, pp. 168-188.

P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Advances in Cryptology, Crypto '96, LNCS 1109, N. Koblitz,
Ed., Springer-Verlag, 1996, pp. 104-113.

P. Kocher, J. Jaffe, B. Jun, “Introduction to differential power analysis and related
attacks,” available from http://www.cryptography.com/dpa/technical/.

18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L.R. Knudsen, “Truncated and higher order differentials,” Fast Software Encryp-
tion, LNCS 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 196-211.

L.R. Knudsen, M.J.B. Robshaw, “Non-linear approximations in linear cryptanaly-
sis,” Advances in Cryptology, Eurocrypt’96, LNCS 1070, U. Maurer, Ed., Springer-
Verlag, 1996, pp. 224-236.

L.R. Knudsen and D. Wagner, “On the structure of Skipjack,” to appear in Discrete
Applied Mathematics, special issue on Coding Theory and Cryptology, C. Carlet,
Ed.

R. Lidl and H. Niederreiter, “Introduction to finite fields and their applications,”
Cambridge University Press, 1986.

S. Lucks, “Attacking seven rounds of RIJNDAEL under 192-bit and 256-bit keys,”
Third Advanced Encryption Standard Candidate Conference, NIST, April 2000,
pp. 215-229.

F.J. MacWilliams and N.J.A. Sloane, “The theory of error-correcting codes,”
North-Holland Mathematical Library, vol. 16, 1977.

X. Lai, J.L. Massey and S. Murphy, “Markov ciphers and differential cryptanaly-
sis,” Advances in Cryptology, Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-
Verlag, 1991, pp. 17-38.

National Institute of Standards and Technology, “FIPS 186-2, Digital Signature
Standard (DSS),” January 27, 2000.

V. Rijmen, “Cryptanalysis and design of iterated block ciphers,” Doctoral Disser-
tation, October 1997, K.U.Leuven.

V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, E. De Win, “The cipher SHARK,”
Fast Software Encryption, LNCS 1039, D. Gollman , Ed., Springer-Verlag, 1996,
pp. 99-111.

D. Wagner, “The boomerang attack,” Fast Software Encryption, LNCS 1636,
L. Knudsen, Ed., Springer-Verlag, 1999, pp. 156-170.

B. Weeks, M. Bean, T. Rozylowicz, C. Ficke, “Hardware performance simulations
of round 2 AES algorithms,” Third Advanced Encryption Standard Candidate Con-
ference, NIST, April 2000, pp. 286-304.

A M. Youssef, S.E. Tavares, and H.M. Heys, “A new class of substitution-
permutation networks,” Workshop on Selected Areas in Cryptography, SAC’96,
Workshop record, 1996, pp. 132-147.

A M. Youssef, S. Mister, and S.E. Tavares, “On the design of linear transformations
for substitution permutation encryption networks,” Workshop on Selected Areas of
Cryptography, SAC’97, Workshop record, 1997, pp. 40-48.

A The substitution box

KHAZAD uses the same S-box as the ANUBIS cipher (cf. [1], where the pseudo-
random generation method is described in detail). We list the S-box contents
here for ease of reference.

const byte sbox[256] = {

0xa7, 0xd3, Oxe6, 0x71, 0xd0, Oxac, O0x4d, 0x79,
0x3a, 0xc9, 0x91, Oxfc, Oxle, 0x47, 0x54, Oxbd,
0x8c, Oxab, 0x7a, Oxfb, 0x63, 0xb8, Oxdd, 0xd4,
Oxeb, 0xb3, Oxchb, Oxbe, 0xa9, 0x88, 0x0c, O0xa2,

19

0x39, Oxdf, 0x29, Oxda, 0x2b, 0xa8, Oxcb, Ox4c,
0x4b, 0x22, Oxaa, 0x24, 0x41, 0x70, Oxa6, 0xf9,
0xba, Oxe2, 0xb0O, 0x36, 0x7d, Oxe4, 0x33, Oxff,
0x60, 0x20, 0x08, 0x8b, Oxbe, Oxab, 0x7f, 0x78,
0x7c, 0x2c, 0x57, 0xd2, Oxdc, 0x6d, Ox7e, 0x0d,
0x53, 0x94, 0Oxc3, 0x28, 0x27, 0x06, O0xbf, Oxad,
0x67, Oxbc, 0x55, 0x48, 0x0e, 0x52, Oxea, 0x42,
0x5b, Oxbd, 0x30, 0x58, 0xb1l, 0x59, 0x3c, Ox4e,
0x38, 0x8a, 0x72, 0x14, 0xe7, 0xc6, Oxde, 0x50,
0x8e, 0x92, 0Oxd1, 0x77, 0x93, 0x45, 0x9a, Oxce,
0x2d, 0x03, 0x62, 0xb6, 0xb9, Oxbf, 0x96, 0x6b,
0x3f, 0x07, 0x12, Oxae, 0x40, 0x34, 0x46, Ox3e,
0xdb, Oxcf, Oxec, Oxcc, Oxcl, Oxal, OxcO, 0xd6,
0x1d, Oxf4, 0x61, 0x3b, 0x10, 0xd8, 0x68, 0xal,
0Oxbl, 0x0a, 0x69, O0x6c, 0x49, Oxfa, 0x76, Oxc4,
0x9e, 0x9b, Ox6e, 0x99, 0Oxc2, 0xb7, 0x98, Oxbc,
0x8f, 0x85, Ox1f, Oxb4, 0xf8, 0x11, Ox2e, 0x00,
0x25, Oxlc, 0x2a, 0x3d, 0x05, 0x4f, O0x7b, 0xb2,
0x32, 0x90, Oxaf, 0x19, Oxa3, 0xf7, 0x73, 0x9d,
0x15, 0x74, Oxee, Oxca, 0x9f, 0x0f, Ox1lb, 0x75,
0x86, 0x84, 0x9c, Ox4a, 0x97, Oxla, 0x65, 0xf6,
Oxed, 0x09, Oxbb, 0x26, 0x83, Oxeb, 0x6f, 0x81,
0x04, 0Ox6a, 0x43, 0x01, 0x17, Oxel, 0x87, 0xf5,
0x8d, 0xe3, 0x23, 0x80, 0x44, 0x16, 0x66, 0x21,
Oxfe, 0xd5, 0x31, 0xd9, 0x35, 0x18, 0x02, 0x64,
0xf2, Oxf1, 0x56, Oxcd, 0x82, 0xc8, Oxba, 0xfO,
Oxef, 0xe9, 0xe8, Oxfd, 0x89, 0xd7, O0xc7, 0xbb,
Oxa4, 0x2f, 0x95, 0x13, 0xOb, 0xf3, O0xe0, 0x37

}s

20

